
Q1.

The diagram below shows a gas chromatogram for a sample containing four isomers with the molecular formula $C_6H_{12}O_2$

The carrier gas is nitrogen and the stationary phase is polar.

Which of the four isomers in this sample is the most abundant?

Q2.

Endomorphin-2 is a peptide with the amino acid sequence shown.

Each amino acid is represented by a three-letter abbreviation.

Tyr = tyrosine Pro = proline Phe = phenylalanine

Figure 1 shows part of the structure of endomorphin-2, showing the Tyr–Pro–Phe– part of the molecule.

Figure 1

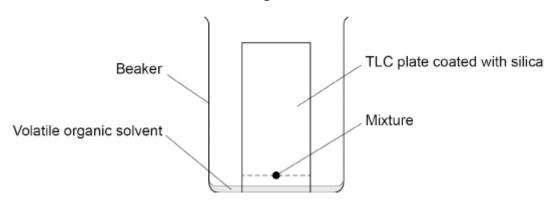
(a) The –NH₂ at the end of the amino acid sequence of endomorphin-2 shows that the terminal functional group is an amide, not an acid.

Complete the structure of endomorphin-2 in Figure 1.

(2)

(b) Use the structure in **Figure 1** to draw the skeletal formula of proline, Pro.

A student hydrolyses a sample of endomorphin-2 to break it down into its constituent amino acids.


The student analyses the resulting mixture by thin-layer chromatography, TLC.

- /	(c)	State a reagent and the conditions needed for the hydroly	:_
- 1	r	State a readent and the conditions beened for the hydroly	/212
١,	\mathbf{v}_{i}	Otate a reagent and the containons necessarion the rivaron	, JIJ.

Reagent	
Conditions	
	(2)

(d) Figure 2 shows the apparatus used for the TLC.

Figure 2

There is a piece of the apparatus missing from **Figure 2**. This omission will result in an inaccurate chromatogram.

Identify the missing piece of the apparatus.

State and explain why this piece of the apparatus is needed.

Missing piece			
Explanation			
-			

(e) State why the amino acids separate on the TLC plate.

(1)

(3)

When the solvent has risen up the TLC plate, the student removes the plate from the beaker and sprays it with a developing agent.

Figure 3 shows the result.

Figure 3

Name a	suitable	deve	loping	agent.
	Name a	Name a suitable	Name a suitable deve	Name a suitable developing

State why the developing agent is needed.

Name					
Why needed					

(g) Determine the R_f value for Tyr.

R_{f}	
	(1)

(Total 12 marks)

(2)